Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 52(5): 1461-1475, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36645001

RESUMO

Copper sulfides have gained significant attention as alternative electrodes for rechargeable batteries. A simple and easily scalable synthetic pathway to access these materials is highly desirable. This paper describes the facile synthesis of metal-rich digenite Cu1.8S nanocrystals from a structurally characterized new single-source molecular precursor in various high boiling solvents of varied polarity. The as-prepared nanostructures were thoroughly characterized by PXRD, Raman spectroscopy, EDS, XPS, electron microscopy techniques and diffuse reflectance spectroscopy to understand the crystal structure, phase purity, elemental composition, morphology and band gap. It was found that the reaction solvent has a profound role on their crystallite size, morphology and band gap, however the crystal structure and phase purity remained unaffected. Pristine Cu1.8S nanostructures have been employed as an anode material in lithium-ion batteries (LIBs). The cell delivers a high initial charge capacity of ∼462 mA h g-1 and retains a capacity of 240 mA h g-1 even after 300 cycles at 0.1 A g-1. DFT calculations revealed that multi-size polyhedron layers in the direction perpendicular to the two Li movement channels aid in the sustainable uptake of Li atoms with controlled volume expansion. The structure-mediated flexibility of the metal-rich Cu1.8S lattice during lithiation permits high cyclability with reasonable retention of capacity.

2.
Dalton Trans ; 51(16): 6366-6377, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35384953

RESUMO

Highly stable blue photoluminescent tellurium nanocomposites (Te NCs) coated with a molecular assembly of α-cyclodextrin (α-CD) have been prepared by using in situ generated solvated electrons (esol-) in the reaction media. The methodology used is rapid and green as the preparation of colloids was over in a matter of a few seconds and no hazardous agents (reducing or stabilizing) were used. Furthermore, fine control over the size of Te NCs has been demonstrated by simply varying the absorbed irradiation dose. As a matter of fact, the anisotropic property exhibited by tellurium makes it difficult to control the phase and morphology of its nanomaterials. However, unlike the majority of the previous reports, Te NCs formed by the current approach were amorphous and spherical shaped. Another interesting aspect of this work is the cyan-blue photoluminescence (PL) exhibited by the NCs. Systematic photophysical investigations indicated bandgap radiative decay as the origin of photoluminescence. A compositional analysis indicated the presence of Te(0) along with tellurium oxides (TeOx). TGA studies revealed the formation of a dense coating (∼55%) of α-CD molecules on the NCs. Pulse radiolysis-based studies evidenced the formation of Te-based transients by the solvated electron-induced reaction. Importantly, no interference of α-CD was observed in the kinetics of the transient species. Remarkable concentration-dependent killing was observed only in the case of cancerous cells, while no such trend was seen in normal healthy cells. This is a significant observation that can be utilized to achieve differential toxicity of Te nanomaterials in tumor versus normal cells.


Assuntos
Ciclodextrinas , Nanocompostos , Elétrons , Telúrio
3.
Phys Chem Chem Phys ; 24(10): 6256-6265, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35229840

RESUMO

The development of alternative plasmonic materials that can replace gold and silver is of long-standing interest in materials research. In this study, we have prepared and characterized thin films of TiN, an emerging plasmonic material, and examined its effectiveness for fluorescence coupling in metal-dielectric structures having TiN as the plasmonically active component. We have used a combination of experiment and reflectivity calculations to determine the nature and dispersion of the optical modes sustained by the metal-dielectric structures, which furthermore are adjustable by varying the thickness of the dielectric layer. Our results reveal that fluorophores placed on the TiN substrates can couple with the surface-plasmon mode and/or the waveguide modes supported by these structures, to provide polarized and directional emission over narrow angular ranges. The performance of TiN substrates for surface plasmon-coupled emission (SPCE) and waveguide-coupled emission (WGCE) is found to be comparable with conventional Au substrates. Importantly, the TiN thin films are reusable, which is certainly advantageous for their use in SPCE or WGCE-based fluorescence sensing applications.

4.
Nanoscale Adv ; 2(3): 1214-1227, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36133061

RESUMO

We report, for the first time, the development of gamma radiation resistant polysulfone (Psf)-nanodiamond (ND) composite membranes with varying concentrations of NDs, ranging up to 2 wt% of Psf. Radiation stability of the synthesized membranes was tested up to a dose of 1000 kGy. To understand the structure-property correlationship of these membranes, multiple characterization techniques were used, including field-emission scanning electron microscopy, atomic force microscopy, drop shape analysis, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, gel permeation chromatography, positron annihilation spectroscopy, and small angle X-ray scattering. All the composite membranes exhibited enhanced radiation resistance properties, with 0.5% loading of NDs as the optimum. Compared to the radiation stability of Psf membranes up to a dose of 100 kGy, the optimum composite membranes are found to be stable up to a radiation dose of 500 kGy, owing to the unique surface chemistry of NDs and interfacial chemistry of Psf-ND composites. Experimental findings along with the Monte Carlo simulation studies confirmed a five times enhanced life-span of the composite membranes in an environment of the intermediate level radioactive waste, compared to the control Psf membrane.

5.
J Phys Chem Lett ; 10(11): 2663-2668, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31050902

RESUMO

An elegant platform to explore frustrated magnetism is the kagome spin lattice. In this work, clinoatacamite, a naturally occurring S = 1/2 kagome-like antiferromagnetic insulator, is synthesized in water at ambient pressure for the first time from a cuprous chloride (CuCl) precursor whereby Cu(I) was spontaneously oxidized to Cu(II) in the form of clinoatacamite [Cu2(OH)3Cl] with a simultaneous reduction of graphene oxide (GO) to reduced graphene oxide (rGO) in one pot. A stable nanocomposite of phase-pure clinoatacamite nanocrystals embedded in the rGO matrix was isolated. The clinoatacamite-rGO nanocomposite was determined to be magnetically active with a markedly enhanced coercive field of ∼2500 Oe at 5 K as well as electronically active with a conductivity value of ∼200 S·m-1 at 300 K. Our results illustrate an avenue of combining exotic magnetic and electronic lattices without impeding their individual characteristics and synergistically generating a new class of magnetic semiconductors.

6.
ACS Appl Mater Interfaces ; 7(32): 17713-24, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26225901

RESUMO

The room temperature chemiresistive response of n-type ZnO nanowire (ZnO NWs) films modified with different thicknesses of p-type cobalt phthalocyanine (CoPc) has been studied. With increasing thickness of CoPc (>15 nm), heterojunction films exhibit a transition from n- to p-type conduction due to uniform coating of CoPc on ZnO. The heterojunction films prepared with a 25 nm thick CoPc layer exhibit the highest response (268% at 10 ppm of H2S) and the fastest response (26 s) among all samples. The X-ray photoelectron spectroscopy and work function measurements reveal that electron transfer takes place from ZnO to CoPc, resulting in formation of a p-n junction with a barrier height of 0.4 eV and a depletion layer width of ∼8.9 nm. The detailed XPS analysis suggests that these heterojunction films with 25 nm thick CoPc exhibit the least content of chemisorbed oxygen, enabling the direct interaction of H2S with the CoPc molecule, and therefore exhibit the fastest response. The improved response is attributed to the high susceptibility of the p-n junctions to the H2S gas, which manipulates the depletion layer width and controls the charge transport.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...